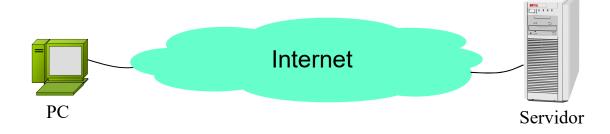
Astillero 4.0 – El astillero del futuro

Estandarización IETF para IoT e industria 4.0

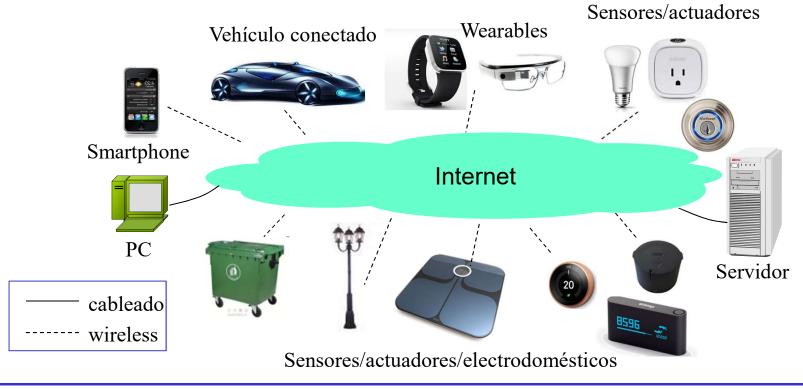
Carles Gómez
Dept of Network Engineering
carlesgo@entel.upc.edu



Índice

- 1. De Internet a IoT
- 2. Protocolos IETF para IoT
 - 2.1. Pila de protocolos de referencia
 - 2.2. IETF 6Lo
 - 2.3. IETF LPWAN
- 3. IETF 6TiSCH
 - 3.1. IoT e industria
 - 3.2. TSCH
 - 3.3. 6TiSCH
- 4. Conclusiones

1. De Internet a IoT


- Internet
 - Hasta finales de los 90
 - Dispositivos fijos
 - Cables
 - Alimentación
 - Comunicación

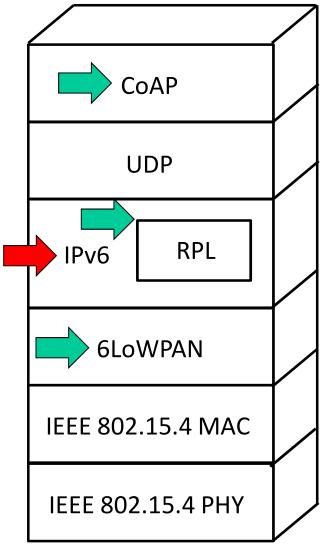
- Mecanismos fundamentales de Internet diseñados para este scenario
 - IP, TCP, HTTP...

1. De Internet a IoT

- Internet of Things (IoT)
 - Conexión a Internet de un número masivo de dispositivos vinculados a cosas
 - Acceso remoto a sensores, actuadores, etc.

1. De Internet a IoT

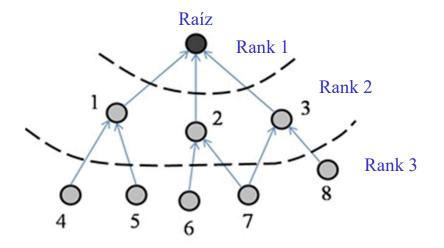
- Muchos dispositivos de IoT con restricciones severas
 - Procesado
 - P.ej. procesadores de 8 o 16 bits
 - Memoria
 - P.ej. ~10 kB de RAM
 - Energía
 - P.ej. pila botón de 230 mAh

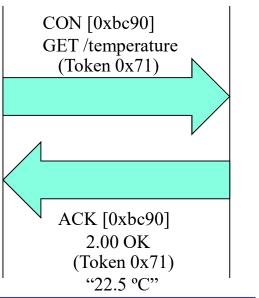

	Current consumption	Lifetime
Active (Tx/Rx) mode	20 mA	11.5 hours
Sleep mode	1 μΑ	26.25 years

- Enlaces también típicamente limitados
 - Bajo ancho de banda, alta tasa de error

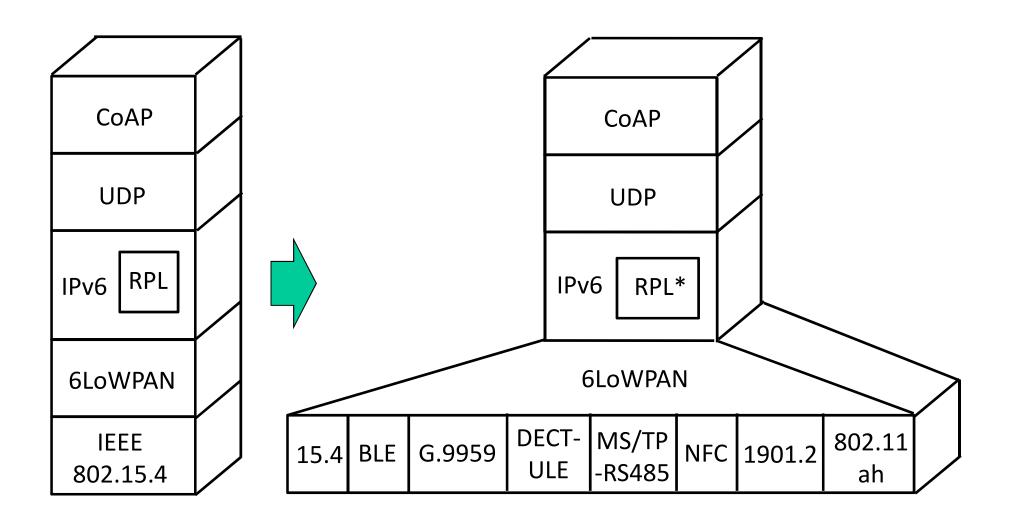
Teórico

- Después de una década de estandarización en IETF
 - Protocolos nuevos o adaptados para dispositivos restringidos
- Primera ola de estándares
- Segunda ola
 - -6Lo
 - 6TiSCH
- Tercera ola en curso
 - LPWAN




- 6LoWPAN
 - IPv6 over Low power Wireless Personal Area Networks
 - Capa de adaptación para soportar IPv6 sobre redes IEEE
 802.15.4 de forma adecuada
 - Fragmentación
 - Compresión de cabeceras

- RPL
 - IPv6 Routing Protocol for Low power and Lossy networks
 - RFC 6550 (2012)
 - Directed Acyclic Graph (DAG)
 - Optimizado para aplicaciones de recogida de datos
 - Soporta diferentes métricas


- CoAP
 - Constrained Application Protocol
 - RFC 7252 (2014)
 - Clientes manipulan representaciones de recursos de servidores
 - *Primo ligero* de HTTP
 - Recursos identificados por URIs
 - E.g. coap://example.com:5683/~sensors/temp.xml
 - Petición y respuesta
 - Fiabilidad opcional
 - Sobre UDP

Servidor

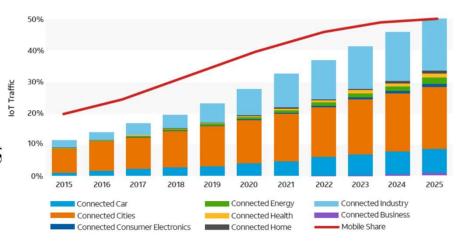
2.2. IETF 6Lo

2.2. IETF 6Lo

- Adaptación de 6LoWPAN para otras interfaces
 - Bluetooth Low Energy (RFC 7668)
 - 2015
 - ITU-T G.9959 (RFC 7428)
 - 2015
 - DECT-ULE (RFC 8105)
 - 2017
 - MS/TP (RFC 8163)
 - 2017
 - NFC
 - En curso
 - IEEE 1901.2
 - En curso
 - IEEE 802.11ah
 - En curso

2.3. IETF LPWAN

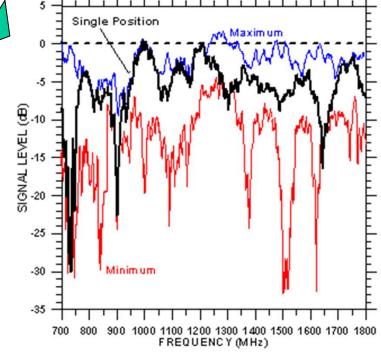
- Adaptación para tecnologías LPWAN
 - Alcances > 1 km
 - Bajo coste de infraestructura
- Limitaciones extremadamente severas
 - Adaptación más allá de 6LoWPAN
- Tecnologías
 - Sigfox
 - LoRa/LoRaWAN
 - NB-IoT
 - Wi-SUN



3.1. IoT e industria

- Industria 4.0
 - IoT aplicado a la industria
 - Monitorización, control, alarmas
- Red industrial
 - Comunicación entre sensores, actuadores, centro de control
 - Fiabilidad y determinismo
 - Costes de cableado
 - 300-3000 \$/metro
 - Soluciones wireless ofrecen fiabilidad 99.999%
 - ... y tiempo de vida de batería de 10 años

Redes industriales hacia el wireless


3.1. IoT e industria

- Problemas (del wireless) en escenarios industriales
 - Atenuación multicamino
 - Muy probable en presencia del metal, paredes, etc.
 - "Ceros"
 - Interferencia externa
 - Ruido, chispas, etc.
- Problemas de banda estrecha

Solución: (Time Synchronized)

Channel Hopping

http://www.utexas.edu/research/mopro/chapter08/chapter08-2.htm

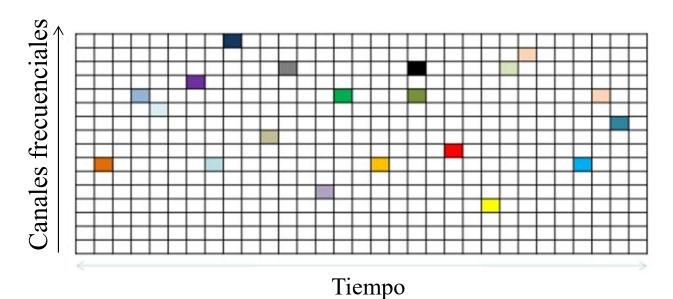
3.1. IoT e industria

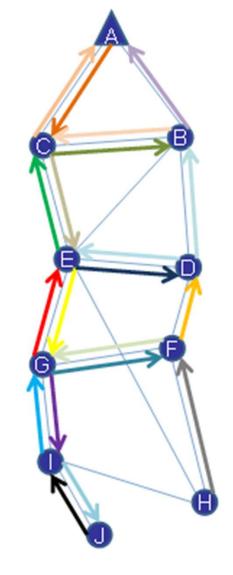
- Soluciones
 - Dust Networks
 - 2004
 - WirelessHART
 - 2007
 - ISA 100.11a
 - 2009
 - IEEE 802.15.4e
 - 2012

IEEE STANDARDS ASSOCIATION

IEEE Standard for Local and metropolitan area networks—

Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)


Amendment 1: MAC sublayer



Source: M.R. Palatella, "What is IEEE802.15.4e TSCH?", IETF'87

3.2. TSCH

- Concepto
 - Nodos sincronizados
 - Tiempo dividido en ranuras
 - En cada ranura, se puede emplear un canal distinto
 - Recepción/transmisión/dormir

3.3. 6TiSCH

- IETF 6TiSCH Working Group
 - IPv6 over Time Synchronized Channel Hopping (6TiSCH)
 - Noviembre 2013
 - Principalmente, escenarios industriales
 - Potencialmente, también otros escenarios
 - Basado en IP: integración con sistemas de producción
- Basado en pila de protocolos de referencia
 - Sobre 802.15.4e TSCH
 - Gestión de la planificación de la red
 - Negociación entre vecinos
 - Configuración (mínima) de una red

802.15.4e

TSCH

4. Conclusiones

- Internet of Things comienza a ser una realidad
- Los componentes del ecosistema IoT están disponibles
 - Estándares, implementaciones y productos
- Rápida evolución
- Se prevé que la Industria 4.0 sea una de las aplicaciones clave de IoT

Gracias!

Carles Gómez
Dept of Network Engineering
Universitat Politècnica de Catalunya
Spain
carlesgo@entel.upc.edu

